skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, Sunbochen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a convex optimization approach to chance-constrained drift counteraction optimal control (DCOC) problems for linear systems with additive stochastic disturbances. Chance-constrained DCOC aims to compute an optimal control law to maximize the time duration before the probability of violating a prescribed set of constraints can no longer be maintained to be below a specified risk level. While conventional approaches to this problem involve solving a mixed-integer programming problem, we show that an optimal solution to the problem can also be found by solving a convex second-order cone programming problem without integer variables. We illustrate the application of chance-constrained DCOC to an automotive adaptive cruise control example. 
    more » « less
  2. Drift counteraction optimal control (DCOC) aims at optimizing control to maximize the time (or a yield) until the system trajectory exits a prescribed set, which may represent safety constraints, operating limits, and/or efficiency requirements. To DCOC problems formulated in discrete time, conventional approaches were based on dynamic programming (DP) or mixed-integer programming (MIP), which could become computationally prohibitive for higher-order systems. In this paper, we propose a novel approach to discrete-time DCOC problems based on a nonlinear programming formulation with purely continuous variables. We show that this new continuous optimization-based approach leads to the same exit time as the conventional MIP-based approach, while being computationally more efficient than the latter. This is also illustrated by numerical examples representing the drift counteraction control for an indoor airship. 
    more » « less